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Abstract. In a many-to-one matching model, we show that the set of

envy-free matchings is a lattice. A Tarski operator on this lattice,

which can be interpreted as modeling vacancy chains, has the set of

stable matchings as its fixed points. (JEL C78)

1. Introduction

This paper studies envy-free matchings in a many-to-one matching model (e.g. be-

tween hospitals and doctors). The set of envy-free matchings turns out to be a lattice,

and the set of stable matchings equals the set of fixed points of a Tarski operator on

this lattice. Informally speaking, envy-freeness is a relaxation of stability that allows

blocking pairs involving a doctor and an empty position of a hospital. Envy-free

matchings emerge as natural states in some markets. For example, in senior level

labor markets (Blum Roth and Rothblum 1997), positions typically become available

when current incumbents retire, and the resulting empty positions are often filled

with candidates who are incumbents elsewhere. If the market is stable before the

retirements, then it will be envy-free after. This paper establishes some structure

on the set of envy-free matchings, and the Tarski operator may serve as a model of

re-equilibration in such a setting. It will become clear that if a market does not move
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Storms and Leon Zhang for helpful discussions. Roth’s work was supported in part by a grant from

the National Science Foundation.

1



2 QINGYUN WU AND ALVIN E. ROTH

quickly to re-equilibration–i.e. if it is often observed before the Tarski operator has

converged to a stable matching–then envy-free matchings will be observed.

This work resembles, in many ways, the earlier matching literature that studies

stability through Tarski’s fixed point theorem (Tarski 1955), with the main difference

being that we start from what we show to be a lattice of matchings. Beginning with

Adachi (2000), Fleiner (2003), Echenique and Oviedo (2004), Hatfield and Milgrom

(2005), Ostrovsky (2008) and others analyzed stable allocations using a function from

a lattice to itself whose fixed points are stable. These earlier papers all start with a

lattice that is larger than the set of matchings, for instance, many of them build their

operators on the set of “pre-matchings”, in which A being matched to B does not

imply B is matched to A. In this paper, we show that the lattice fixed point method

also works if our base lattice is the set of envy-free matchings.

One way to compare these new results with the previous literature is to consider

what they tell us about how stable matches may be reached. The previous literature

can be interpreted as modeling how a centralized process like the deferred acceptance

algorithm converges through a series of offers and rejections to a set of offers and

acceptances that coincide with a matching, and that matching is stable. The present

analysis can be interpreted as modeling how a decentralized sequence of offers, in

which firms fill vacant positions, and cause vacancies in other firms, produces a se-

quence of envy-free matchings if it begins from one, and eventually converges to a

stable matching. If the process stops short of convergence, the stopping point will

itself be an envy-free matching from which further vacancy chains can arise.

When thinking about lattices in two-sided matching models, economists sometimes

focus on lattices like the one originally introduced by Conway (see Knuth 1976, Roth

and Sotomayor 1990): the join of two matchings will match all agents on one side of



THE LATTICE OF ENVY-FREE MATCHINGS 3

the market to their more preferred partners, and, dually, the meet will match these

agents to their less preferred partners. However we will show that the set of envy-free

matchings forms a lattice that does not exhibit this kind of duality between the join

and the meet. It is worth mentioning that, in Blum et al (1997), even though they did

not study the underlying lattice structure, they obtained some lattice-theoretic re-

sults on the one-to-one marriage model through the method of modifying preferences,

some of which are extended to many-to-one settings in Cantala (2011). We further

investigate and generalize some of their conclusions in many-to-one markets with the

help of a Tarski operator and provide some general algebraic insights. The envy-free

matchings considered here generalize the “simple” matchings studied by Sotomayor

(1996) and the “firm-quasi-stable” matchings studied by Blum et al (1997).1

In the next section we describe the model. Results on the lattice structure are

presented in section 3. Section 4 explores the implications of these results together

with the interaction between envy-free matchings and traditional stable matchings.

Section 5 studies possible generalizations and counterexamples. In section 6, we

discuss applications of envy-free matchings: section 6.1 is devoted to vacancy chains

in senior level labor markets, and section 6.2 introduces the role of envy-freeness in

the constrained matching models. Section 7 concludes.

2. Model and Preliminaries

We work with a standard two-sided many-to-one matching model with strict pref-

erences. There is a finite set of hospitals H and a finite set of doctors D. Each doctor

d has strict preferences �d over the set of hospitals and being unmatched, denoted by

∅. Each hospital h: (1) has a capacity qh; (2) has strict preferences �h over subsets

of doctors and being unmatched, again denoted by ∅; (3) furthermore its preference

1See also Sotomayor (1999, 2000, 2006, 2016) for applications and generalizations of simple match-

ings in other settings.
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over groups of doctors is responsive: for any D′ ⊆ D, if |D′| > qh then ∅ �h D′;

if |D′| ≤ qh then for any d1 ∈ D\D′ ∪ {∅}, d2 ∈ D′: D′ �h D′ ∪ {d1} \ {d2} if

and only if d2 �h d1. In words, h considers D′ as unacceptable (worse than being

unmatched) if D′ contains more doctors than h’s capacity; the ranking of each doctor

is independent of his colleagues, and any two groups of doctors that differ in a single

doctor are preference ordered by the preference for individual doctors.

A matching µ will specify which doctors are matched to each hospital; more

formally, it is a mapping such that: (1) ∀h ∈ H, µ(h) ⊆ D, |µ(h)| ≤ qh, and ∀d ∈

D, µ(d) ∈ H ∪ {∅}; (2) µ(d) = h⇔ d ∈ µ(h). We say a matching µ is individually

rational if: (1) ∀d ∈ D, µ(d) %d ∅; and (2) ∀h ∈ H, d ∈ µ(h) implies d %h ∅. A

doctor-hospital pair (d, h) blocks µ if h �d µ(d) and at least one of the following

situations happen:

(1) ∃d′ ∈ µ(h) such that d �h d′;

(2) |µ(h)| < qh and d �h ∅.

A matching µ is stable if and only if it is individually rational and there is no block-

ing pair. In such a framework, Gale and Shapley (1962) and Roth (1985a) showed

that a stable matching always exists, furthermore there is a doctor optimal stable

matching that all doctors weakly prefer to any other stable matching, and similarly

there is a hospital optimal stable matching that all hospitals weakly prefer to

any other stable matching.

Now we are ready to introduce envy-free matchings. In the definition of stability

there are two kinds of blocking pairs; in envy-free matchings, we allow type (2)

blocking pairs involving a vacant position, while disallowing type (1) blocking pairs

involving a filled position:2

2A matching that disallows type (2) blocking pairs while allowing type (1) blocking pairs is often

called a non-wasteful matching. And a matching is stable if and only if it is both envy-free and
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Definition 2.1. Given a matching µ, a doctor d has justified envy toward d′ who

is assigned to hospital h, if (i) h �d µ(d) and (ii) d �h d′. We say µ is envy-free if

it is individually rational and no doctor has justified envy.

Notice that the absence of justified envy can be regarded as reflecting a kind of

fairness of the hiring process to doctors: if one doctor has a position that another

would have preferred, it is because this was the choice of the employer. If (d, h) forms

a blocking pair in an envy-free matching, then h must have at least one empty posi-

tion. Let L denote the set of envy-free matchings.

Here are some examples of envy-free matchings: all stable matchings are envy-free;

the empty matching in which everyone is unmatched is envy-free; a matching in which

one hospital h is matched to its most preferred k (1 ≤ k ≤ qh) doctors that list h as

acceptable (everyone else is unmatched) is envy-free; and after each round of a hos-

pital proposing deferred acceptance algorithm, the temporary matching is envy-free.

Compared to stability, envy-freeness preserves fairness but sacrifices efficiency.

In the one-to-one matching market, where qh = 1 for all hospitals h, envy-free

matchings correspond to Sotomayor’s (1996) simple matchings: A matching µ is

simple if it is individually rational and whenever a blocking pair (d, h) exists we

have µ(h) = ∅. She used simple matchings to provide a non-constructive proof for

the existence of stable matchings in the one-to-one marriage model. In this paper

we investigate the structure of both envy-free matchings and stable matchings in the

many-to-one setting.

When studying stable matchings in many-to-one markets with responsive prefer-

ences, a common proof technique is to represent each hospital by multiple copies each

non-wasteful. That is, an envy-free matching may be wasteful, i.e. it may leave unfilled positions

that could have been filled.
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having a quota of one, to make the matching one-to-one. More precisely, for each

hospital h with quota qh, divide it into qh copies: h1, h2, ..., hqh . Consider a new mar-

ket (“the related marriage market”), in which the agents are doctors and copies of

hospitals. Each hospital copy hi has the same preference over doctors as h; and each

doctor follows his original preference when comparing two copies of different hospitals

h and h′; and strictly prefers hp over hq if and only if p < q. Then there is a natural

bijection between matchings in the two markets: a matching µ in the many-to-one

market, that matches hospital h to µ(h) corresponds to a matching µ′ in the related

marriage market where hi is matched to h’s i-th most preferred doctor among µ(h).

It is well-known that µ is stable in the many-to-one market if and only if µ′ is stable

in the related marriage market (Roth and Sotomayor 1990). We have an analogous

result for envy-free matchings:

Proposition 2.2. A matching µ is envy-free if and only if the corresponding matching

µ′ in the related marriage market is simple.

Proof of Proposition 2.2:

(⇒) Let µ be an envy-free matching, for the sake of contradiction, assume µ′ is not

simple, then there exists a blocking pair (hi, d) such that µ′(hi) = d′ ∈D. If µ′(d) = h′j

or ∅, then d has justified envy towards d′ in µ, contradiction. Otherwise, µ′(d) = hj

for some j 6= i, but this is impossible, since if i < j then d′ �hi d, and if i > j then

hj �d hi, either way (hi, d) can not be a blocking pair in µ′ to begin with.

(⇐) Let µ′ be a simple matching. Assume µ is not envy-free, then there exists some

d and d′ such that d has justified envy towards d′, which means (d, µ′(d′)) blocks µ′,

contradiction. �
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3. Lattice Structure

We first prove that the set of envy-free matchings forms a lattice, under the partial

order %D of the common preference of doctors (i.e. µ %D µ′ if and only if ∀d ∈ D,

µ(d) %d µ′(d)). Recall that a partially ordered set L is called a join-semilattice if

any two elements in L have a least upper bound (called join, denoted by ∨); and a

meet-semilattice if any two elements in L have a greatest lower bound (called meet,

denoted by ∧). A partially ordered set L is a lattice if it is both a join-semilattice

and meet-semilattice. Before we present the proof, here is a simple example that

illustrates the result:

Example 3.1. Consider the following preference profile with D= {d1, d2} and H=

{h1, h2, h3}, each hospital has capacity 1 and unlisted means unacceptable.

d1: h1 �d1 h2

d2: h3 �d2 h2

h1: d1

h2: d1 �h2 d2

h3: d2

There are seven envy-free (simple) matchings. We document them with a pair

(x, y), where x is the index of d1’s hospital and y is the index of d2’s hospital. If x or

y is empty, then the corresponding doctor is unmatched. For example, matching (b)

below means µ(d1) = h2 and µ(d2) = ∅.

(a): (, )

(b): (2, )

(c): (1, 3)

(d): (1, )

(e): (1, 2)

(f): (, 3)
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c: (1, 3)

e: (1, 2)g: (2, 3)

f: (, 3) d: (1, )

b: (2, )

a: (, )

Figure 1. Hasse Diagram For Example 3.1

(g): (2, 3)

Under the common preference of doctors %D, these matchings form a lattice, whose

Hasse diagram is shown in figure 1. Notice unlike in stable matchings, the common

preference of hospitals is no longer a dual order of %D. For example, matching (a) is

the worst outcome for all doctors, and it is also the worst for all hospitals.

To show that the set of envy-free matchings forms a lattice, we need to find the

join and meet for any two envy-free matchings µ and µ′. Just like in Conway’s lattice

theorem of stable matchings (see Knuth 1976), a natural candidate for µ ∨ µ′ is a

“matching” λ that matches each doctor d to his more preferred hospital between

µ(d) and µ′(d) (and each hospital h to the corresponding matched doctors); similarly

a “matching” ν that matches each doctor d to his less preferred hospital between µ(d)

and µ′(d) is a candidate for µ ∧ µ′. From the example above, we see that ν is not

necessarily an envy-free matching: look at (e) and (g), both d1 and d2 like h2 less,

therefore ν is not individually rational because {d1, d2} violates the quota of h2 and

hence is unacceptable. On the other hand, λ defines an envy-free matching. We have

the following lemma:
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Lemma 3.2. The matching λ defined above is always envy-free and therefore the set

of envy-free matchings L is a join-semilattice under %D.

Proof of Lemma 3.2: First, we show λ is an individually rational matching. Since

each doctor d matched to h in λ is matched to h either in µ or µ′, hence d �h ∅;

similarly h �d ∅. Then the only thing left to prove is |λ(h)| ≤ qh. Assume otherwise,

then we have |λ(h)| > qh ≥ |µ(h)| and |λ(h)| > qh ≥ |µ′(h)|. From |λ(h)| > |µ′(h)|

we know that there must exist a doctor d such that λ(d) = h but µ′(d) 6= h, this

implies µ(d) = h. Similarly there is a doctor d′ such that µ(d′) 6= h and µ′(d′) = h.

Without loss of generality, say d �h d′. Then d envies d′’s position in matching µ′

(by definition of λ, h �d µ′(d)), contradicting the fact that µ′ is envy-free.

Now we show λ is envy-free. Assume otherwise, say d has justified envy towards

d′ for hospital h in λ, i.e. d �h d′, h �d λ(d) and λ(d′) = h. Then d′ is matched to h

in µ or µ′. Without loss of generality, assume µ(d′) = h. By definition of λ, we have

h �d λ(d) %d µ(d). But this means d has justified envy towards d′ in matching µ,

contradiction.

Therefore λ is an envy-free matching. It is clear that λ is the least upper bound of

µ and µ′, and so the set of envy-free matchings is a join-semilattice under %D. �

With a technical lemma we can show that L is a lattice, even though the economic

interpretation of meet is unclear. (We further discuss the meet in Remark 4.7 and

identify situations in which a Conway-like meet is well-defined.)

Lemma 3.3. A finite join-semilattice with a minimum is a lattice.

Readers are referred to Stanley (2011) for a complete proof of this lemma.3

3The idea is that, for any two elements x and y in a finite join-semilattice L, define a set Mx,y =

{z| z ≤ x, z ≤ y}. This set is always non-empty because of the minimum element. Then one can

check that x ∧ y = ∨Mx,y.



10 QINGYUN WU AND ALVIN E. ROTH

Theorem 3.4. The set of envy-free matchings L is a lattice under %D.

Proof of Theorem 3.4: by Lemma 3.2, L is a join-semilattice, and the matching in

which everyone is unmatched is the minimum of L, then by Lemma 3.3, L is a lattice

under %D. �

Remark 3.5. The set L is a lattice but it is not distributive. One easy way to check

this is: in Example 3.1, a-f-g-c and a-b-d-e-c are two maximal chains with different

lengths, but every maximal chain in a finite distributive lattice has the same length.

One can also directly check (g ∧ e) ∨ d = d while (g ∨ d) ∧ (e ∨ d) = e. It is clear

that the minimum of L is the matching at which everyone is unmatched, but what is

the maximum? Sotomayor (1996) showed that in one-to-one matching markets, when

preferences are strict, the doctor optimal stable matching is the only weakly Pareto

optimal matching for doctors among all simple matchings. It is straightforward to

extend her proof (or use Proposition 2.2) to our many-to-one model with strict respon-

sive preferences. Combine this with the fact that the maximum element of L must

be weakly Pareto optimal for doctors among all envy-free matchings, we conclude

that the maximum element of L is exactly the doctor optimal stable matching. One

should also note that the responsiveness assumption on preferences is crucial to this

kind of structure; we will show in section 5 that when preferences are substitutable,

the lattice property no longer holds.

Now we apply Tarski’s fixed point theorem to the lattice of envy-free matchings and

give an alternative proof of the existence and lattice property of stable matchings.

Note that a lattice is called complete if every subset (and not just every pair of

elements) has a meet and a join, and that every finite lattice is complete. Below is

the statement of Tarski’s famous result:

Theorem 3.6. (Tarski 1955) Let (L,≤) be a complete lattice and T : L → L be

isotone, i.e. ∀x, y ∈ L, x ≤ y ⇒ T (x) ≤ T (y), then the set of fixed points of T is

nonempty and forms a complete lattice with respect to ≤.



THE LATTICE OF ENVY-FREE MATCHINGS 11

We next define a suitable Tarski operator T . (In Section 6 we will explain how T

can be interpreted as one step in a vacancy chain process, in which hospitals with

empty positions fill them, possibly by hiring incumbents at other hospitals and hence

creating new vacant positions.)

Definition 3.7. Given an envy-free matching µ, let Bµ denote the set of all blocking

pairs in µ. Define:

B1
µ = {(d, h) ∈ Bµ| ∀(d′, h) ∈ Bµ, d %h d′}, i.e. B1

µ consists of each hospital’s favorite

blocking pair in Bµ (if any);

B2
µ = {(d, h) ∈ B1

µ| ∀(d, h′) ∈ B1
µ, h %d h

′}, which consists of each doctor’s favorite

blocking pair in B1
µ (if any).

Because preferences are strict, B1
µ identifies at most one blocking pair for each hospital

h. Similarly B2
µ picks out at most one blocking pair for each doctor d. Now we can de-

fine an operator T that maps L (the lattice of envy-free matchings) to itself as follows:

for all d such that there is some h that (d, h) ∈ B2
µ, define T (µ)(d) = h (h is unique

by definition of B2
µ);

for all other d such that there is no h that (d, h) ∈ B2
µ, define T (µ)(d) = µ(d);

define T (µ)(h) = {d| T (µ)(d) = h}, so that T (µ) remains a matching.

In words, T satisfies all blocking pairs (d, h) in B2
µ by transferring each doctor d to

the corresponding hospital h. Below are two immediate but important implications

of the definitions:

Proposition 3.8. For any envy-free matching µ:

(I). T (µ) %D µ;

(II). T (µ) = µ if and only if µ is stable.

To check that Theorem 3.6 applies, we need to show two things: (1) T (µ) is an

envy-free matching; and (2) T is isotone. For (1), first note that each d and h shows
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up at most once in B2
µ, so T is well-defined and will not cause a capacity violation.

(Recall if (d, h) is a blocking pair then h must have at least one unfilled position.)

By construction of B2
µ, whenever we have a blocking pair (d, h) ∈ B2

µ, d must be h’s

most preferred doctor who forms a blocking pair with h, thus after transferring d to

h, no doctor will have justified envy towards d. Also, after we satisfy all the blocking

pairs in B2
µ, d has no justified envy towards any other doctor. Therefore T (µ) must

be an envy-free matching.

Before proving the monotonicity of T and invoking Tarski’s fixed point theorem, we

should point out that, (1) and Proposition 3.8 combined already imply the existence

of stable matchings: start with an arbitrary envy-free matching, repeatedly applying

T is a Pareto improving process for all doctors until it reaches a fixed point. Since

doctors’ welfare is bounded above, the Pareto improving phase must terminate. In

other words, eventually this process leads to a fixed point of T , namely a stable

matching. This is more of a special property of envy-free matchings than of our

carefully crafted operator. Since all blocking pairs in envy-free matchings only involve

empty positions, any process of satisfying blocking pairs that moves from one envy-

free matching to another will be Pareto improving for all doctors. Thus any such

procedure will stop in finite time, and achieve a stable allocation.4 This is why we

do not need a careful algorithm like Roth and Vande Vate (1990) to make sure the

process of fixing blocking pairs does not cycle (as in Knuth 1976) when dealing with

envy-free matchings. For instance, another simple operator that will do the job is to

select an arbitrary blocking pair from B1
µ and satisfy it. (But this operator is not

isotone.) The main benefit of Tarski’s fixed point theorem is the lattice structure

of fixed points, and the monotonicity of T also has interesting implications in our

case. So we return to point (2): its proof is non-trivial and deserves to be a separate

lemma:

4See Sotomayor (2006) for more discussion on such processes, under a variety of different settings.
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Lemma 3.9. If µ and µ′ are two envy-free matchings such that µ %D µ′, then for

any doctor d, T (µ)(d) %d T (µ′)(d), which in turn implies T (µ) %D T (µ′).

Proof of Lemma 3.9: If d is not involved in any blocking pair in B2
µ′ , then T (µ)(d) %d

µ(d) %d µ′(d) = T (µ′)(d). Hereafter assume there is some hospital h such that

(d, h) ∈ B2
µ′ , then by definition T (µ′)(d) = h. We discuss 4 cases: (I). Hospital

h fills its quota in µ. Recall that (d, h) ∈ B2
µ′ implies h does not fill its quota in

µ′. Then there must exist a doctor d′, who is matched to h in µ but not in µ′.

Since µ %D µ′, then h �d′ µ′(d′), therefore (d′, h) must be a blocking pair in µ′

(h has unfilled positions in µ′). Since (d, h) is h’s favorite blocking pair in µ′, then

d �h d′. Now look at µ, since d can not have justified envy towards d′, we must

have µ(d) %d h. Thus T (µ)(d) %d µ(d) %d h = T (µ′)(d). (II). Hospital h does not

fill its quota in µ, but (d, h) is not a blocking pair in µ. Then again µ(d) %d h and

T (µ)(d) %d µ(d) %d h = T (µ′)(d). (III). Hospital h does not fill its quota in µ, and

(d, h) is a blocking pair in µ; furthermore (d, h) ∈ B2
µ. Then T (µ)(d) = h = T (µ′)(d).

(IV). Hospital h does not fill its quota in µ, and (d, h) is a blocking pair in µ but

(d, h) /∈ B2
µ. Then (d, h) is absent from B2

µ, either because h likes another blocking

pair (d′, h) better, or (d, h) is h’s favorite blocking pair but d likes another blocking

pair (d, h′) better. The former situation can not happen, since (d′, h) will also be

a blocking pair in µ′, contradicting the fact that (d, h) ∈ B2
µ′ . For the latter case,

T (µ)(d) = h′ �d h = T (µ′)(d). The above four cases are exhaustive and therefore

T (µ)(d) %d T (µ′)(d). �

Theorem 3.10. The set of stable matchings is non-empty and forms a lattice with

respect to %D.

Proof of Theorem 3.10: The lattice of envy-free matchings is finite and therefore

complete, and the operator T defined above maps L to itself. Moreover, T is iso-

tone, thus by Theorem 3.6, the set of fixed points of T , namely the stable matchings
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(Proposition 3.8 (II)), is non-empty and forms a lattice under %D. �

Furthermore, we can pin down the closed form expression of the fixed point of

T , starting from any envy-free matching µ. First, we present a lemma, which is

interesting in its own right.

Lemma 3.11. Let µ1 be an envy-free matching and µ2 be a stable matching, then

µ1 ∨ µ2 is stable.

Proof of Lemma 3.11: Let µ′1 and µ′2 be the corresponding matchings in the related

marriage market. By Proposition 2.2, µ′1 is simple and µ′2 is stable. Theorem A.3 in

Blum et al (1997) states that, the join of a simple matching and a stable matching

is stable. Therefore µ′1 ∨ µ′2 is stable in the related marriage market, which in turn

implies that the corresponding µ1 ∨ µ2 in the many-to-one market is stable.5 �

One might find Lemma 3.11 a little surprising.6 We will offer some intuition in

Remark 4.3. Also, there will be a dual version of this result in Lemma 4.6.

Theorem 3.12. Let µ be an envy-free matching, denote the fixed point of T starting

from µ by F (µ). Then F (µ) = µ ∨ µH , where µH is the hospital optimal stable

matching.

In particular, starting with the empty matching, repeatedly applying T will con-

verge to µH , i.e. T performs (a version of) the hospital proposing deferred acceptance

algorithm.

5Remember the join operator ∨ matches each doctor to his more preferred hospital, therefore

µ′1 ∨µ′2 in the related marriage market is the corresponding matching of µ1 ∨µ2 in the many-to-one

market.
6The proof of Theorem A.3 in Blum et al (1997) is non-trivial: it uses a version of the decom-

position lemma (listed as Lemma 4.5 in our paper) together with discussing three cases. See also

Cantala (2011).
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Proof of Theorem 3.12: By Lemma 3.11, µ ∨ µH is stable. By monotonicity of T ,

µ∨ µH %D µ implies µ∨ µH %D F (µ) (notice we always achieve F (µ) in finite time).

On the other hand, T is a weakly Pareto improving operator for all the doctors, i.e.

T (µ) %D µ, then F (µ) %D µ. Also, since µH is doctor pessimal among all stable

matchings, we have F (µ) %D µH , thus F (µ) %D µ∨µH . Therefore the antisymmetry

of %D implies F (µ) = µ ∨ µH . �

4. Further Relations To Stable Matchings

Recall the “Rural Hospital Theorem” (Roth 1986): if a hospital does not fill its

quota in one stable matching, then it is matched to the same set of doctors in all

stable matchings. This implies that each hospital fills the same number of positions

at every stable matching. Envy-freeness is a relaxation of stability, so we can ask, will

we be able to fill more positions in an envy-free matching than in a stable matching?

The negative answer lies in the lattice structure:

Corollary 4.1. The total number of hospital positions filled in any envy-free matching

will not exceed the total number of positions filled in any stable matching.

Proof of Corollary 4.1: Let µ be any envy-free matching and µD be the doctor

optimal stable matching. Then µD %D µ, since µD is the maximum element in the

lattice. That means each doctor weakly likes his assignment in µD more than in µ,

then weakly more doctors are assigned to a hospital in µD than in µ. Hence weakly

more positions are filled in µD (and, by the Rural Hospital Theorem, in any stable

matching) than in µ.7 �

7One colleague suggested the following extension of Corollary 4.1: if a hospital does not fill its

quota in one stable matching, is the set of doctors it is matched with in any envy-free matching a

subset of the set of doctors it is matched with in all stable matchings? Unfortunately the answer is

negative. Here is a simple example: 2 hospitals h1 and h2, 1 doctor d, d prefers h1 to h2 and all agents
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What can we say about an envy-free matching and the hospital optimal stable

matching µH?

Corollary 4.2. Let µ be any envy-free matching. If µ %D µH , then µ is stable.

Proof of Corollary 4.2: If µ %D µH , then µ∨µH = µ. By Theorem 3.12, F (µ) = µ,

which means µ is stable. �

Remark 4.3.

(1). The contraposition of Corollary 4.2 says that if µ is envy-free but not stable,

then at least one doctor is strictly worse off in µ than in µH .

(2). Note that Corollary 4.2 does not rule out the case that µ is envy-free but not

stable, and µ is incomparable to µH . This can happen, so the envy-free but not stable

matchings need not lie completely below the stable matchings.

(3). Corollary 4.2 “supports” Lemma 3.11. If one can prove Corollary 4.2 directly,

then Lemma 3.11 follows as a consequence, since µ1∨µ2 %D µ2 %D µH implies µ1∨µ2

is stable.

The set of envy-free matchings is generally much larger than the set of stable

matchings. Given an envy-free matching µ, there can potentially be some blocking

pairs (d, h); if for each h involved in some blocking pair, we reduce the quota of h to

the number of doctors it is currently matched to, then we obtain a stable matching

in the new market. And vice versa, given a stable matching, if we increase the quotas

of some hospitals, then this matching is envy-free in the new market. With this idea

in mind, let’s inspect a theorem proved by Gale and Sotomayor in the one-to-one

matching market:

Theorem 4.4. (Gale and Sotomayor 1985) In a one-to-one matching market, sup-

pose H is contained in H ′ and µD and µH are the doctor, hospital optimal stable

are acceptable to each other. Then the only stable outcome is to match d with h1. However another

matching assigning d to h2 is envy-free. Therefore from the point of view of h2, this conjecture does

not hold. We thank him for sharing his idea.
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matching respectively in market (D,H, P ) (P represents the preferences). Let µ′D, µ′H

be the doctor and hospital optimal stable matching respectively in market (D,H ′, P ′),

where preferences P ′ agrees with P on D and H, then the following statements hold:

µH %H µ′H under P ; µ′H %D µH under P ′;

µ′D %D µD under P ′; µD %H µ′D under P .

In words, if some hospitals are removed from the market, then all doctors are weakly

worse off and all remaining hospitals are weakly better off in both doctor optimal and

hospital optimal stable matchings.

The fact that all doctors are weakly worse off in the doctor optimal stable match-

ing is implied by the lattice structure, since the doctor optimal stable matching in a

smaller market resulting when some hospitals are removed from the larger market is

a simple matching in the larger market, which is weakly worse (for all doctors) than

the maximum element in the lattice, namely the doctor optimal stable matching in

the larger market. On the other hand, we can give a lower bound on the number of

simple matchings, by using the statement that all hospitals remaining in the smaller

market are weakly better off in the doctor optimal stable matching. Let H∗ be the

set of hospitals that are matched in the doctor optimal stable matching (in the larger

market). We claim there are at least 2|H
∗| many simple matchings in the market: for

each H∗∗ ⊆ H∗, consider the doctor optimal stable matching in a market consists of

the original set of doctors and H∗∗. It is a simple matching in the larger market and

since all hospitals in H∗∗ are weakly better off, they must remain matched in this

simple matching. Therefore different H∗∗ gives us a different simple matching in the

larger market (since H∗∗ is exactly the set of hospitals that are matched in the simple

matching). Consequently there are at least 2|H
∗| many simple matchings in such a

market.
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Now we are ready to revisit the meet of two envy-free matchings. In Example 3.1,

we showed that, in general, the Conway style meet ν that matches each doctor d to

his less preferred hospital between µ(d) and µ′(d) (and each hospital h to the corre-

sponding matched doctors) may not be a matching. However, for a stable matching

µ and an envy-free matching µ′, ν is well-defined. Furthermore, it is envy-free.

To prove this, we need a version of decomposition lemma proved in Blum et al

(1997).8 Readers are referred to the appendix of their paper for a proof.

Lemma 4.5. (Blum et al 1997) In a one-to-one matching model, let µ be a stable

matching and µ′ be a simple matching. Define H(µ, µ′) to be the set of hospitals h

such that µ(h) �h µ′(h) and h does not belong to any blocking pair in µ′, and define

D(µ′, µ) to be the set of doctors d such that µ′(d) �d µ(d). Then both µ and µ′ are

isomorphisms between H(µ, µ′) and D(µ′, µ).

With this lemma, we obtain a dual result of Lemma 3.11:

Lemma 4.6. If µ is a stable matching and µ′ is an envy-free matching, then ν that

matches each doctor d to his less preferred hospital between µ(d) and µ′(d) is also an

envy-free matching. Moreover, it is the meet of µ and µ′ in the lattice of envy-free

matchings.

Proof of Lemma 4.6: We only prove the case where each hospital has a quota of

1. The general case then follows from Proposition 2.2. (Just like the argument in

Lemma 3.11.)

First, ν is a matching, i.e. no two doctors d1 and d2, both like a hospital h less,

when comparing their assignments in µ and µ′. Assume otherwise, say d1 and d2

both choose h in ν. Without loss of generality, assume h = µ(d1) and h = µ′(d2),

then by definition of ν, µ′(d1) �d1 h = µ(d1). Notice µ′(d1) �d1 µ(d1) implies

8The proof of Lemma 3.11 also depends on this result.
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d1 ∈ D(µ′, µ), then by Lemma 4.5, h ∈ H(µ, µ′). But applying Lemma 4.5 again,

we have d2 ∈ D(µ′, µ), which means µ′(d2) �d2 µ(d2), so h isn’t d2’s less preferred

hospital.

Now we show ν is simple. Assume this is not true, then there exists some hospital h

such that ν(h) = d ∈ D and (d′, h) blocks ν, for some doctor d′. Notice by definition

of ν, h = ν(d) is either µ(d) or µ′(d), similarly ν(d′) is either µ(d′) or µ′(d′). If h =

ν(d) = µ(d) = µ′(d), then (d′, h) would block either µ or µ′ which would contradict

that they are simple. So we take µ(d) and µ′(d) to be distinct, and consider four

cases: (I). ν(d) = µ(d) and ν(d′) = µ(d′). In this case (d′, h) blocks µ, contradiction.

(II). ν(d) = µ′(d) and ν(d′) = µ′(d′). In this case (d′, h) blocks µ′, contradiction. (III)

ν(d) = µ(d) and ν(d′) = µ′(d′). By definition of ν, ν(d) = µ(d) ⇒ µ′(d) �d µ(d),

i.e. d ∈ D(µ′, µ). Then by Lemma 4.5, h = µ(d) ∈ H(µ, µ′), which means: (a).

d = µ(h) �h µ′(h) and (b). h does not belong to any blocking pair in µ′. We show

that (a) and (b) contradict each other. Since (d′, h) forms a blocking pair in ν, we have

d′ �h d. Then by transitivity, d′ �h d �h µ′(h). Now look at µ′, h �d′ ν(d′) = µ′(d′)

and d′ �h µ′(h), then (d′, h) blocks µ′, contradicts statement (b). (IV). ν(d) = µ′(d)

and ν(d′) = µ(d′). In this case, h = µ′(d), then µ′ is simple implies that h does not

belong to any blocking pair in µ′. Notice h �d′ ν(d′) = µ(d′), since (d′, h) blocks ν.

Then (d′, h) is not a blocking pair in µ implies µ(h) �h d′. Also, we have d′ �h d,

then µ(h) �h d = µ′(h). Therefore we have h ∈ H(µ, µ′), then by Lemma 4.5,

d = µ′(h) ∈ D(µ′, µ), i.e. µ′(d) �d µ(d). This contradicts the fact that ν(d) = µ′(d).

The above four cases are exhaustive, thus no matter what, ν is a simple matching.

It is clear that, when ν is well-defined, it will be the meet of µ and µ′, in the lattice

of envy-free matchings. �

Remark 4.7. (On the meet of two envy-free matchings:)

Given two envy-free matchings µ1 and µ2, let H1 be the set of positions that has to be

removed from H so that µ1 is stable in the new market. Similarly define H2 to be the
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set of positions that has to be removed from H so that µ2 is stable in the new market.

If one of H1 and H2 is contained in the other, say H1 ⊆ H2, then µ2 is envy-free in the

market created by removing H1 from H. By Lemma 4.6, ν is well-defined for µ1 and

µ2, in the market with positions H\H1, then it will also be envy-free in the original

market consisting of positions in H. Therefore for such µ1 and µ2, a Conway-like meet

is well-defined. (Lemma 4.6 is the special case when H1 = ∅.)

5. Generalization and Counterexamples

In this section we discuss some generalization attempts. As we mentioned in sec-

tion 2, envy-freeness is one of the possible generalizations of simpleness defined by

Sotomayor. The key idea of simple matching is that if there exists a blocking pair,

then one of the agents involved must be unmatched. In envy-free matchings, we en-

sure any blocking hospital has at least one empty position in such a spirit. Another

natural way of generalizing simple matchings to a many-to-one model is by requiring

the doctor involved in a blocking pair to be unmatched, i.e. if (h, d) forms a blocking

pair in µ, then µ(d) = ∅. Let’s call this kind of matching Doctor-quasi-stable.

With such a notion of quasi-stability, we should focus on the common preference of

hospitals, since we more or less ignored doctors’ welfare by allowing matchings to

persist even if some unmatched doctors form blocking pairs. Unfortunately, we lose

the lattice structure in Doctor-quasi-stable matchings. Example 3.1 is still a valid

counterexample for defining meet in the sense of Conway (switching roles of h and d

of course). The following simple example will illustrate that a Conway-like join for

hospitals is also problematic in this setting.

Example 5.1. Let there be one hospital h with quota qh = 3 and four doctors d1, d2,

d3, d4. The preference of h is: d1 �h d2 �h d3 �h d4 �h ∅, and each doctor prefers h

than being unmatched. It is easy to see that both µ(h) = {d1, d4} and µ′(h) = {d2, d3}
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are Doctor-quasi-stable, but then defining the join of these two matchings needs more

information than that preferences are responsive.

Therefore we cannot conduct a similar lattice theoretic analysis on Doctor-quasi-

stable matchings. Now, let’s turn to another type of generalization. Originally we

worked with responsive preferences, which are a special case of substitutable pref-

erences (for hospitals). In matching theory, substitutability is usually described by

a collection of choice functions Ch (for each hospital h), which picks out the most

preferred group of doctors for hospital h, given any subset of doctors. The preferences

of hospitals satisfy substitutability if: ∀h ∈ H, D ⊆ D, d and d′ ∈ D, we have

d ∈ Ch(D) ⇒ d ∈ Ch(D \ {d′}). It is clear that the choice functions associated with

responsive preferences satisfy the substitutability condition. Stability is also well-

defined in this setting, a matching µ is stable if the following two conditions hold: (1)

individual rationality: µ(d) %d ∅ and µ(h) = Ch(µ(h)) for all doctor d and hospital

h; (2) no blocking pair: there is no doctor hospital pair (d, h) such that h �d µ(d)

and d ∈ Ch(µ(h) ∪ {d}). One might wonder whether we can generalize our results to

substitutable preferences.

The following example will rule out some naive attempts. The preferences in this

example are taken from Roth and Sotomayor (1990).

Example 5.2. Let there be two hospitals h1, h2 with qh1 = 2 and qh2 = 1, and three

doctors d1, d2, d3. The preferences go as follows:

h1 : {d1, d2} �h1 {d1, d3} �h1 {d2, d3} �h1 {d3} �h1 {d2} �h1 {d1} �h1 ∅

h2 : {d3} �h2 ∅

d1 : h1 �d1 h2 �d1 ∅

d2 : h1 �d2 h2 �d2 ∅

d3 : h1 �d3 h2 �d3 ∅

One can easily verify that this preference profile is substitutable but not responsive,
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and there is a unique stable matching µ:

µ(d1) = h1, µ(d2) = h1 and µ(d3) = h2.

We would have to be careful about how we define “envy-freeness” in the case of

substitutable preferences.9 If we do not modify envy-freeness at all, in the above

stable matching µ, d3 has justified envy towards d2 since µ(d2) = h1, d3 �h1 d2 and

h1 �d3 h2. This is unreasonable; clearly we do not want envy-freeness to conflict with

stability. One way to resolve this issue is by extending envy-freeness in the following

way:10 a doctor d has justified envy towards d′ who is assigned to hospital h in match-

ing µ, if (i). h �d µ(d) and (ii). Ch({d}∪µ(h)) = {d}∪ (µ(h)\{d′}). In other words,

h is willing to kick d′ out in order to admit d. Notice that under this definition of

envy-freeness, a stable matching is always envy-free. Another possible modification is

to make sure whenever (h, d) forms a blocking pair, h has at least one empty position.

But with the above two definitions we lose the lattice structure: a matching µ′ that

µ′(d3) = h1, and everyone else is unmatched, satisfies both quasi-stability concepts,

but if we let each doctor choose their more preferred hospital between µ and µ′, all

of them will choose h1, which violates the quota of h1. So a Conway-like join would

fail with these quasi-stability notions. (And again the meet fails by Example 3.1.) Of

course we do not rule out the possibility that these matchings still form a lattice in

the mathematical sense, but if both join and meet are not Conway-like, their inter-

pretation would be unclear.

One of the reasons that we are unable to generalize our results to substitutable pref-

erences is that our analysis relies heavily on the hospitals’ preferences on individual

doctors. Especially when proving the monotonicity of the Tarski operator T , we used

9See Sotomayor (1999) for a generalized definition of “envy-free” matchings in many-to-many

matching markets with substitutable (but not necessarily strict) preferences.

10We thank an anonymous referee for suggesting this extension.
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a full elementary combinatorial argument that focuses on the rankings of each indi-

viduals; while most other papers (e.g. every paper we mentioned in the introduction

section) in the literature obtain this property through (usually trivial) set inclusions,

which is naturally group oriented. But perhaps here is another reason that is more

fundamental: the set of stable matchings under substitutable preferences, does not

behave very nicely. Roth (1985b) showed that, in a many-to-one matching market, as-

suming substitutability on hospitals’ preferences, there are counterexamples in which

both of the Conway style join and meet (for doctors) of two stable matchings fail to

be stable.11 Therefore the set of stable matchings in such settings lacks necessary

structure, let along envy-free matchings that are “less organized”.

6. Applications

6.1. Vacancy Chains.

This section explores the role of envy-free matchings in vacancy chains that appear

in senior level labor markets. Firms and workers in labor markets correspond to hos-

pitals and doctors respectively in our model. In a senior level labor market where an

initial matching is present, a small change in one of the firms (e.g. a worker retires

or a new position is created) may trigger a chain reaction. For instance, imagine a

professor at Harvard retires, his position may be filled by a professor from MIT. Now

MIT has a vacant position, which may in turn attract a Stanford professor. Then

Stanford would want to hire a new professor, and so on. This is a “vacancy chain”. If

the initial matching is stable, then after some workers retire (and are removed from

the market), or/and some new positions are created, this matching may no longer be

11Li (2013) showed that the Conway style join and meet for hospitals are not well-defined among

stable matchings in such markets either. However, with additional “cardinal monotonicity” con-

ditions on hospitals’ preferences, Alkan (2002) showed that the set of stable matchings forms a

Conway-like lattice.



24 QINGYUN WU AND ALVIN E. ROTH

stable, but it remains envy-free. Another type of change that may result in a vacancy

chain is some new workers joining the market. When this happens, the matching

may not be envy-free any more. But if firms always prefer experienced workers to

new ones, then envy-freeness is still preserved. Therefore envy-free matchings can

be a good tool for studying vacancy chains. This is in fact the motivating example

of Blum et al (1997), who constructed vacancy chain models with simple matchings.

Clearly envy-freeness is a more general and suitable description of the market if some

workers from the same firm retire at the same time or some firms create multiple

positions at once.

Our Tarski operator describes a possible re-stabilization process following retire-

ments or the creation of new positions. When a stable matching becomes an envy-free

matching due to market changes, firms may start to make offers to workers. If each

firm involved in a blocking pair makes an offer to its most preferred worker who forms

a blocking pair with it (B1
µ in section 3), and each worker accepts his most preferred

offer received (B2
µ), then a new envy-free matching is formed and the first round of va-

cancy chains is completed. If this process repeats until all vacancy chains have ended,

then our discussion in section 3 shows that it will stop at a stable matching.12 More-

over, if a centralized clearing-house exists, then it can expedite this firm-proposing

like procedure by matching each worker to his partner in µ ∨ µH , by invoking Theo-

rem 3.12. Note that this process is not strategy-proof for the workers (in either the

decentralized or centralized versions), since µH is not.

12This process often takes time to converge, and sometimes it ends before reaching the final stable

matching. For instance, in the process of hiring junior faculty members, after an offer is rejected,

academic departments sometimes decline to review additional potentially acceptable candidates, and

delay hiring until the next academic year. As another example, envy-free but unstable (wasteful)

outcomes are observed by Andersson et al. (2017 in preparation) in some sequential procedures for

assigning students to public and private schools in Turkey and Sweden.
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6.2. Constrained Matching Models.

The implications of the Rural Hospital Theorem sometimes give a reason for labor

market administrators to avoid stable matchings, at which some unpopular “rural hos-

pitals” will not be able to recruit enough doctors to meet their needs. To avoid such a

situation, sometimes distributional constraints are introduced. For instance, starting

from 2009, the Japanese government imposed regional caps in its national medical

matching program to make sure enough doctors are assigned to rural hospitals. In

response, several papers such as Kamada and Kojima (2010) and Goto et al (2014)

develop modified matching models, seek relaxed stability notions, and propose new

strategy-proof algorithms. Envy-freeness is one of the concepts adopted. Of course,

a desirable matching should satisfy not only envy-freeness, but also some weakened

efficiency constraints: since e.g. the empty matching is envy-free but inefficient. Ka-

mada and Kojima (2017 in preparation) discover that when the constraints satisfy a

what they call “generalized upper bound” assumption, there always exists a feasible

envy-free matching that is most preferred by all doctors, comparing to any other

feasible envy-free matching. And they develop an algorithm for constructing such a

matching with the help of Tarski’s fixed point theorem. A similar situation arises

in school choice problems (see Abdulkadiroglu and Sönmez 2003, Ehlers et al 2014,

for example). To avoid socioeconomic segregation, many school choice programs in

the United States seek to impose constraints on enrollment at public schools. Under

these constraints, stability with respect to original preferences may be unachievable.

Often some version of envy-freeness (also called fairness13 in the controlled school

choice literature) becomes a goal of market designers.

13See for example Balinski and Sönmez (1999).
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7. Conclusion

In a many-to-one matching model with responsive preferences, the set of envy-free

matchings is a lattice, and the set of stable matchings equals the set of fixed points

of a Tarski operator that can be interpreted as satisfying blocking pairs of the sort

that arise in vacancy chains. The set of envy-free matchings seems likely to be of

independent interest, since these matchings can arise as the intermediate matchings

on the way to restabilizing a previously stable market following retirements or the

creation of new positions. In decentralized markets, in which the re-stabilization

process takes time, it may be that these intermediate states, in which some firms are

actively seeking to fill recent vacancies, will be the typical state of the market.
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